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1 ABSTRACT
Configured software is widely used to accommodate users with
specific requirements. It promises user-friendliness and process
automation, as it is developed based on specific user requirement.
By implementing new requirements, the program developer needs
to add or modify existing code. In the process, there is a likelihood of
new vulnerabilities being introduced, even perhaps unknowingly
by the developer. Implementing new functionality properly has
its own challenge. Developers often rely on community question
answering forum such as StackOverflow to get quick answers or
consult with other programmers.

To date, there is still no empirical study analyzing security issues
of configurable software using StackOverflow data. To address this
gap we have applied a natural language processing method, i.e.
Latent Dirichlet Allocation (LDA) to investigate a large amount of
StackOverflow data from the last 10 years (2012-2021). The purpose
is to find the recurring security topics of configurable software and
to discover aspects of it that are under-researched. One of the key
findings is cloud access management and Android and Java
development are two dominant security topics in the context of
configurable software and their trends are raising continuously in
the last 10 years. Furthermore, there are indications, that security-
related topics are under-researched. This study aims to understand
the current trend of security-related topics and present undeserv-
ingly under-researched areas.

2 INTRODUCTION
Every organization in different industries creates, processes and
accumulates data. In order to do it in an efficient manner, grow-
ing companies are investing in information processing software
[10]. Thus they will be confronted with the question, whether they
should use off-the-shelf, customized off-the-shelf, or custom
software. Off-the-shelf software is generic built software that is
commercially available for a wide range of consumers. It provides
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only standard or predefined frameworks that target a large num-
ber of users [8]. Modern off-the-shelf software often has appli-
cation programming interfaces (APIs) that allow to some extent
customization or extension on top of the base software. The scope
of customization depends starkly on predefined frameworks [7, 12].
On the other hand, custom software is tailor-made to cater a spe-
cific requirement of an enterprise. Developing custom software is
more expensive because it requires a team of experts consisting
project manager, designer and software developer specifically to
fulfill unique requirements [18]. Furthermore, after integrating the
custom software, there will be an ongoing cost incurred because
the developer is still required to fix bugs, add new functionality
or improve existing frameworks [14]. From here on out, we refer
customized and custom software as configurable software.

From developer’s point of view, programming is an ongoing
learning process to solve new problems. Consulting with other
developers to help them solving problem might be ideal, but unfor-
tunately it is not always practical. Hence they rely on a different
knowledge base to find answers. One of the best ways is to look
for an existing working example which could be a coding tutorial
or code snippet for other similar problems [16]. A good source
for code snippets is a community Q&A programming website like
StackOverflow, Quora, Reddit and CodeProject.

Despite the importance of security-related topics, we are not
aware of any qualitative study analyzing questions and answers
posted on the relevant Q&A websites. To address this research
gap we have applied text analysis using publicly available Stack-
Overflow dataset1 with a focus on security aspects of configurable
software. There are two ways to retrieve information from text:

• Traditional method, which involves manually reading and
investigating text documents. It is very time-consuming and
therefore not a scalable approach for big amount of data.

• Natural Language Processing (NLP) method which program-
matically allows amore scalable approach for topic discovery
on a massive amount of text data. For topic discovery, the fol-
lowing techniques can be used: Latent Dirichlet Allocation
(LDA), Latent Semantic Analysis (LSA) and Non-Negative
Matrix Factorization(NNMF) [4].

In this paper, we applied data exploratory analysis and LDA
algorithm2 on 264.148 text data collected from StackOverflow. The
data range is over 10 years (2012-2021). Based on this dataset we
have addressed the following research questions (RQ):

RQ1: What is the general trend for security-related questions?
RQ2: What are the dominant topics and their trends in the

last 10 years?
1https://cloud.google.com/blog/topics/public-datasets/google-bigquery-public-
datasets-now-include-stack-overflow-q-a?hl=en
2The source code used in this paper is available on: https://doi.org/10.5281/zenodo.
7737030
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RQ3: What is the reason that some questions do not have an
accepted answer? What are their dominant topics?

Security is one of the most important pillars when creating a
well-architected software system [1]. But that is not always the
case which leads to many damaging consequences [2]. This as-
pect leads to the motivation for RQ1 which is to investigate the
developing trend of security in configurable software and get a
general overview of the current state. To date, there is no quali-
tative study about security issues of configurable software using
data from StackOverflow. Thus, discovering the dominant topics
is the motivation for RQ2. Furthermore, there might be topics in
this area that should get more attention. They could be identified
by finding questions with recurring themes, which are still unan-
swered and getting few responses. Hence, the motivation for RQ3
is to inform and raise the awareness of readers about topics that
are getting less attention than they deserve. The findings might be
useful for academic institutes as an orientation to redirect effort
and necessary resources into under-researched, possible topics for
future research.

3 BACKGROUND
In the following section, we provide background information about
StackOverflow and security concerns of configurable software.

3.1 StackOverflow
Software developers confront coding problems on daily basis. Con-
sulting with fellow developers is not always practical and can
sometimes delay their progress. Hence, they rely more on mul-
tiple knowledge bases. E.g. if they are not familiar with an error
message when using a specific API, they would open its official
documentation or many other publicly available coding tutorials
to find working examples. Another way to solve problems is to
look for a working code snippet that solves other fellow develop-
ers’ similar problems. This is only possible due to the existence of
community Q&A programming websites.

Figure 1: StackOverflow Question with Score 97.

StackOverflow3 is the most popular Q&A programming website
with 100+ million monthly visits on average4. It allows developers
to post and answer coding questions. Before posting a question, they
3https://stackoverflow.com
4https://stackoverflow.co/advertising/audience/

Figure 2: "Accepted Answer" with Score 183 and Green Tick.

are encouraged to search if the same question was posted before.
If it exists and they still post it or if the problem is not described
in an understandable manner, their question will be voted down
by other developers. If other audiences find a question helpful,
then the post will be up-voted. (See figure 1) In the same way,
answers can also be up- or down-voted based on their correctness
and helpfulness. Figure 1 shows a question with score 97. Score
indicates the number of upvotes minus downvotes and will impact
each user’s reputation. Out of multiple answers, only one answer
can be marked as an "accepted answer" with a green tick by the
asking user, if it specifically solves the problem. (Refer to figure 2)
Therefore a developer who seeks a code snippet solution for similar
questions can directly check for questions and especially answers
with the highest votes or the "accepted answer".

3.2 Security concerns of configurable software
When developing a configurable software either in-house or by
using a third-party developer, an enterprise starts with specifying
the requirements. Security is an important feature and must be
stated explicitly as a requirement [19]. Unfortunately in most cases,
this aspect is left out [2]. Followings are the reasons why it is
difficult to develop a secure software:

(1) Writing security features in requirements is like asking obvious
questions like if malicious malware should be prevented to
exploit your web application. Hence they are often left out.
Therefore it depends on the developer’s goodwill to imple-
ment security features, which are not explicitly stated in the
requirements [19].

(2) Program development project could involve multiple vendors.
These different developers need to apply interfaces and pro-
tocols by using the same specifications [11]. Lacking well-
defined specifications could lead to unwritten but necessary
security features being ignored. Later on, especially when a
problem comes up, it could lead to finger-pointing.

(3) Software requirements mostly consist of functional and positive
aspects, which state what end users do want and not what
they don’t want. Therefore negative cases which include
abuse, misuse and confuse cases are not taken into consider-
ation during the development process. These problems are
at best found during the post-development test [2, 19].

(4) Fulfilling functionality requirement is the developer’s first pri-
ority, while the security aspect is completely ignored in ex-
treme cases. Security vulnerabilities could be patched later
as updates, hoping they are not exploited in the meantime.
Some developers view this as a reasonable strategy [2].

(5) Mismanagement: Lack of security guideline in place and hav-
ing to deal with competing priorities are the most frequent
security deterrents [3].
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Figure 3: Methodological Overview of Our Text Analysis.

4 METHODOLOGY
Our objective in this paper is to find insight from StackOverflow
dataset about security topics on configurable software. In following,
we describe every executed step to achieve our objective. For a
methodical overview, please refer to figure 3 above.

4.1 Data Collection
StackOverflow public dataset is available on Google BigQuery data-
base. Due to the huge volumes of data available, we decided to
use the following filter conditions to get relevant data for our text
analytics:

(1) Last 10 years time frame. By the time of writing, the complete
data for the year 2022 was not yet available, hence we used
data from the years 2012-2021.

(2) Search string for questions containing security-relevant top-
ics on configurable software using the following keywords:

secur, protect, custom, config, variab, featur, plug, system family,
product family and software family.

After applying both filters, we obtained 264.148 text data. We
stored this filtered raw data in a local SQLite database for practical
reasons. E.g. During the development process, a script needs to be
executed and improved multiple times and collecting data from the
local database is faster than otherwise.

4.2 Data Preparation
The filtered raw data is in tabular form with multiple attributes, e.g.
id, title, body, tags, view count, etc. Body is the string content of a
StackOverflow question. As the attribute title and body are relevant
to our analytics, we performed data aggregation to combine them
together.

At this stage, the combined text for the title and body could
include a link to a website and a code snippet. We performed link
removal because they are not necessary for our analytics. Code
snippets were also removed because a word used in syntax have
a mostly different meaning than in normal human conversation.
E.g. the syntax for in Python programming language signals the
start of looping over a sequence. Now the texts are cleaned from

unnecessary links and code snippets. We stored them in a local
SQLite database, for easier data retrieval purposes.

4.3 Data Transformation

Figure 4: Breakdown of Transformation Process.

After the last stage, the text consists of a head and body. Further-
more, it still includes HTML tags (p, h1, pre, etc.). HTML tags consist
information about the structure of the text data (paragraphs, sen-
tences, words). We transformed our text data (corpus) by tokenizing
it in a way that the result is compatible as input for the machine
learning algorithm (in the next stage) while still preserving the text
structure.

As can be seen in figure 4, we achieved this by applying the
following steps to 264.148 preprocessed text:

(1) Retrieve each text one by one from local SQLite database.
This step is necessary to ensure that the whole process is
memory friendly.

(2) Break each text into paragraphs. This is possible by reading
the HTML tags (<p>, <h1>, <h2>, <li>) which signal the start
of a paragraph, title, subtitle or list.

(3) Break each paragraph into sentences. Capital letter and
punctuation (. , ?, !) signal the start or end of a sentence.
We did not check these manually, because punctuation can
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be used in different contexts and therefore it is not always
used at the end of a sentence. E.g. period (.) can appear in
floats or abbreviations [4]. Due to this complexity, we used
a pre-trained model from the NLTK library (sent_tokenize
method) to extract every sentence from a paragraph.

(4) Extract alphabetic and non-alphabetic characters/tokens
from each sentence. A whitespace or non-alphabetic char-
acters (punctuation) could mark the start of a new charac-
ter. But this is not always straightforward as in the case
with "wouldn’t" [4]. To cope with this complexity, we ap-
plied another pre-trained model from NLTK library (word-
punct_tokenize method).

(5) Tag each character in the sentence based on its function in
the sentence. The tag used is Penn Treebank tagset, which
consists of 36 different tags. E.g. NN: singular noun, NNS:
plural noun, VB: verb, JJ: adjective [15]. To achieve this, we
applied a method from NLTK library, i.e. pos_tag.

(6) Repeat step 2-5 until all character in the text document re-
trieved in step 1 is processed. Afterward, all characters/tokens
and its tag are stored in the local SQLite database.

(7) Repeat steps 1-6 until all 264.148 text are processed.
The input and output of the above steps can be seen in table 1

below. The transformed text in 3rd column still preserves the struc-
ture of paragraphs and sentences. It always starts with "[[[[", as
the 1st bracket marks the start of a text document, 2nd a paragraph
and 3rd a sentence. The 4th bracket contains a token and its Penn
Treebank tag.

4.4 Topic Discovery
At this stage, all token is associated together with its Penn Treebank
tag, e.g. [’headers’, ’NNS’] or [’having’, ’VBG’]. For an exhaustive
list of Penn Treebank tagset, refer to [15]. The associated Penn
Treebank tag includes, among others, the following information:

(1) Token function in a sentence. E.g. noun: NN, verb: VB, ad-
jective: JJ.

(2) If the token is a noun, the tag also includes information if it
is in singular form NN or plural NNS.

(3) If the token is a verb, the tag differentiates between present
tense VB, past VBD or gerund form VBG.

The tokens need to be normalized depending on their tag for
dimension reduction purposes. This normalization needs to take
the fact into consideration that one word can be used in different
forms and contexts. In order to prevent information loss, similar
words with different forms and contexts need to be normalized
differently.

The examples in figure 5 show the complexity of normalization
process:

(1) the words gardening, garden and gardener shouldn’t be nor-
malized to garden. It is better to normalize based on its Penn
Treebank tag [4].

(2) the past form of leave which is left and the noun left (as in
political left) shouldn’t be normalized to left. The first one
should become leave, while the second one stays as left.

To reduce this complexity, we applied lemmatization to nor-
malize token based on its Penn Treebank tag. In other words, we

Figure 5: Different Normalization Approach (left); Normaliz-
ing Words by Lemmatization (right).

reduced the total number of word features. As shown in figure 5
above all token is normalized so that it still recognizes the sub-
tle difference in similar tokens, e.g. the output still differentiates
the noun gardener and verb garden [4, 5]. After lemmatization, the
transformed text shown in the 3rd column of table 1 above becomes:

[’spring’, ’security’, ’jwt’, ’authenticate’, ’via’, ’header’, ’send’,
’jwt’, ’trouble’, ’try’, ’get’, ’spring’, ’back’, ’end’, ’configure’, ’cor-
rectly’, ’try’, ’send’, ’jwt’, ’react’, ’app’, ’user’, ’logins’, ...]

Box 1: Example of lemmatization output.

As can be seen in box 1, there are some words missing, e.g. will,
not, nor, I, have, been. The missing words are removed because they
are English stopwords. Furthermore, character + is filtered out from
box 1, even though it is not a punctuation( ,.?! , etc.). To remove
such characters, we applied a rule to filter out strings with length:
1.

After lemmatization, the preprocessed data contains a list of
texts, which represent each document. This preprocessed list is not
compatible with machine learning (hereby ML) algorithm. Most
ML method needs numerical representation as input. Therefore
vectorization is needed to convert text to numerical representation
for all documents. In general, there are three text vectorization
methods [4]:

(1) Frequency-based counts how often a term is used in the text.
(2) One-Hot Encoding checks if a term appears in the text (1) or

not (0).
(3) Term Frequency-Inverse Document Frequency (TF-IDF) starts

by executing frequency-based method over all documents.
Afterwards, it performs inverse calculation so that the most
used term has the lowest weight and vice versa. The weights
is normalized to be between 0 and 1.

We applied TF-IDF vectorization because by its nature it gives
smaller weight to more frequent terms. If a term is used very often,
it tends to offer little information about the context. In our study,
the term code appears a lot and it makes sense for us to give such
terms little weight.

In addition to that, we applied frequency filtering during vec-
torization to only allow terms that appear more than 20 times
across all text documents. This is essential to reduce the complex-
ity/dimension of our analytics. As can be seen in table 2, by applying
a filter of minimum term frequency 20, there are 94% fewer terms

4
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Table 1: Overview for Data Transformation.

Text ID Before After Transformation

71367783

<h1>Spring Security + JWT: Will not authenticate via
headers nor send jwt</h1> <p>I have been having trouble
trying to get my spring back end to configure correctly. ...

[[[[’Spring’, ’NNP’], [’Security’, ’NNP’], [’+’, ’NNP’], [’JWT’,
’NNP’], [’:’, ’:’], [’Will’, ’MD’], [’not’, ’RB’], [’authenticate’,

’VB’], [’via’, ’IN’], [’headers’, ’NNS’], [’nor’, ’CC’], ...

Table 2: Frequency Filter Comparison between 0 and 20 on
Dataset for Year 2021, i.e. 24.423 text documents.

Frequency Filter Total Term
0 66.454
20 4.071

than without a frequency filter. Fewer features mean faster com-
puting performance for follow-up ML processes.

The result of vectorization, which is a numerical representation
for each text document can be used as input for an ML method.
We applied an unsupervised ML method, i.e. Lattent Dirichlet
Allocation (LDA) to discover topics in our text documents. LDA is
a generative probabilistic model, in which the topic is represented
as the probability that each of a given set of terms will occur [6].
The text document is represented as a probability mixture of these
topics [4, 6]. In other words, the topic of document (d) does not
require to be distinct (100% topic A) but a mixture of different topics
(P(Topic_x|Document_d): 34% for topic A, 56% B, 10% C, etc.) and a
term (tree) can appear in multiple topics (P(Topic_x|Term_y): 56%
for topic A, 34% D, 10% E). For more clarity, refer to figure 6.

Figure 6: Simplified Overview of LDA: a document can be
represented as a probability mixture of different topics (left),
a topic consists of multiple words and a word can appear in
multiple topics with different weights (right).

In order to generate a good LDA model, it is important to find
the optimal value for the following hyper-parameters:

(1) Total number of topics (n_topics). It is done by checking
coherence values for different n_topics. Basically, in this step,
we generated LDAmodel for each n_topics (in our case from 3
until 20) and compared the coherence value for all generated
LDA models. Each of these LDA models is generated based
on our 10 years of data. The optimal n_topics would be the
one with the highest coherence value [17]. Based on figure
7, the n_topics with the highest coherence score is 7.

(2) The total number of iterations (in other words: How often
can a model read the data again?). Ideally, the model can
read the data as often as possible until the model converges
on every available document and afterward stop reading.
In library Gensim, it could be controlled by modifying the
following hyper-parameters: passes and iterations. 5

Figure 7: Coherence Value for Different Total Number of
Topics (n_topics). Higher is Better.

These steps are computationally expensive and time-consuming,
because it involves a lot of repeating model generation based on 10
years of data with a different set of hyper-parameters. Therefore we
made sure to store all the models and supporting files after every
repetition.

4.5 Visualization
After generating the optimal LDA model with n_topics 7, we visu-
alized our model’s result. For interactive topic model visualization,
we used a Python library called pyLDAvis. As can be seen in figure
8, 5 out of 7 topics are overlapping each other. This result is not fa-
vorable to our analysis, because these topics are not unique enough
from each other. Therefore we decided to inspect the LDA model
5https://radimrehurek.com/gensim/auto_examples/tutorials/run_lda.html
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Figure 8: Unfavorable Distribution for 7 Topics.

with the second-highest coherence score. As can be seen in figure
7, the second best n_topics is 6 and the result can be seen in figure
9. It shows good topic distributions with few overlaps. In the right
half of the figure, we can see the terms which belong to topic 3.
With these terms, we interpreted each of the topics and presented
our findings in section 5.2.

Figure 9: Visualisation for n_topics=6 using pyLDAvis.

5 RESULTS
In this section, we describe our findings and address our research
questions. We would like to remind the reader that our findings
are only specific to security-related questions and don’t necessarily
reflect the general overall trend of StackOverflow.

5.1 RQ1: What is the general trend for
security-related questions on
StackOverflow?

As can be seen in figure 10, the annual total questionswas increasing
from 17.834 and reached a peak in 2015 at 31.368. Afterwards, the
total number was decreasing and stabilized at 24.501. The year with
the highest number of questions without an accepted answer is 2016
with a total of 18.071. Our expectation was the most current year
(2021) should have the most questions without accepted answer,
because an older questionwould have a higher probability of getting

Figure 10: Total Questions: With vs. Without Accepted An-
swer.

an accepted answer, since more time has passed. But the fact that
2016 has the highest number without accepted answers can be
explained by the very high total number of questions for 2015 and
2016.

Figure 11: Duration Distribution for Security-Related Ques-
tions.

Figure 11 shows the annual distribution for the duration a ques-
tion getting an accepted answer. It highlights the probability a
question gets an accepted answer under the same time span (e.g. <1
day, etc.) is decreasing over the year. To get more validation about
this trend, we chose the years 2013 and 2020 for our next analysis,
because they have almost the same total questions.

Table 3: Frequency of a Security Related Question Getting an
Accepted Answer Within a Month: 2013 vs. 2020.

Year Total Questions Questions with Accepted
Answer (<1 Month)

2013 25.500 49%
2020 25.624 35%

Table 3 highlights our previous finding that the probability of
a question getting an accepted answer under the same time span
(e.g. <1 month) is decreasing over the year. Several factors could
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contribute to this trend, e.g. the topics could be under-researched
or few user engagement, which would be addressed in RQ3 section
5.3.

Figure 12: Label Popularity Rank (weighted average, as most
questions contain multiple labels).
For simplicity, only top 20 labels of 2021 are shown in all ranking tables.

Figure 12 shows the top 20 labels used from 2012 - 2021. Label
java, android, c# and php are in the top 5 during this time span.
Spring-related labels (spring and spring-security) were in the top
10 over the year, while the label spring-boot was gaining traction,
especially since the year 2014 from rank 39th to 2nd in the year
2021. Following labels were also becoming more popular: python,
laravel, docker, amazon-web-services, azure, node.js, reactjs, django
and kubernetes.

5.2 RQ2: What are the dominant topics and how
are their trends in the last 10 years?

In this section, we address our findings from the topic discovery
LDA algorithm. Instead of using the n_topics 7which has the highest
coherence value (refer to figure 7), we use n_topics 6. This is due
to less overlapping clustering with n_topics 6. For more clarity,
compare the overlapping in figure 8 and 9.

The result of the LDA model can be seen in table 4 under the
3rd column. The column shows different word combinations for 6
topics. Based on the combination, we interpreted the topics, which
can be seen under the 2nd column.

We show the annual distribution for each topic in figure 13. As
can be seen, the 2nd and 3rd topics (i.e. Android & Java Develop-
ment and Cloud Access Management) are becoming more frequent.
We analyzed the label’s popularity specifically for questions with-
out accepted answers. We didn’t show the rank table, because the
difference with the rank table from figure 12 is very minimal.

For the next section, we put our focus on 2nd and 3rd topic. As can
be seen in figure 14, these topics have the highest absolute number

Table 4: Topic Interpretation Based on Word Combination
(From LDA Output).

Index Topic
(Interpretation)

Words

1 General System
Development

class, variable, value, data, function,
model, object, method, table, like

2 Android & Java
Development

docker, run, java, xml, spring, jdk,
container, version, javax, kafka

3 Cloud Access
Management

token, spring, user, lo-
gin, api, request, aws, au-
thentication, jwt, access

4 Server
Architecture

azure, certificate, server,
service, net, connection,
client, ssl, connect, http

5 Mobile App
Development

android, activity, app, but-
ton, firebase, flutter, java, an-

droid_studio, xamarin, mainactivity

6 Website
Development

php, laravel, email, html, website,
file, react, form, upload, wordpress

Figure 13: Topic Distribution from LDA Model.

without accepted answers. We ignored 1st topic because this topic
represents a general programming question with no specific theme.

Figure 14: Total Number of Questions without Accepted An-
swer.
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5.3 RQ3: What is the reason that some
questions do not have an accepted answer?
What are their dominant topics?

In this section, we start by presenting the dominant labels for 2nd
and 3rd topics. Afterward, we compare the trend for security-related
questions with other topics from StackOverview. The goal is to find
if the security trend corresponds to the general trend in Stack-
Overview, i.e. are security-related topics under-researched or does
it reflect the general trend that questions get fewer answer? (due
to less user engagement)

Figure 15: Label Popularity for Questions without Accepted
Answer (Topic 3: Cloud Access Management).

Figure 15 reveals that spring-related themes are dominant in the
3rd topic, due to the following labels: spring-boot, spring-security,
spring and spring-security-oauth2. Furthermore, the theme Access
Management on the Cloud is dominant, due to the following labels:
amazon-web-services, authentication, oauth-2.0, jwt, keycloak and
spring-security-oauth2.

In 2nd topic, label spring-boot and spring are dominant but not
as strong as in 3rd topic. Topics regarding Container and its Deploy-
ment Tool are also dominant, due to the following labels: docker,
kubernetes and docker-compose. Furthermore, it also includes a topic
about Automation Tool for Deploying and Developing Program with
the following labels: maven, apache-kafka and jenkins.

Table 5: Frequency of All Question (Including Non Security-
Related Topics) Getting an Accepted AnswerWithin aMonth:
2012 vs. 2021.

Year Total Questions Questions with Accepted
Answer (<1 Month)

2012 1.629.386 65%
2021 1.629.580 40%

Figure 16: Label Popularity for Questions without Accepted
Answer (Topic 2: Android & Java Development).

Figure 17: Accepted Answer Distribution for All StackOver-
flow Questions (including non security-related topics).

In figure 17 and 18 we show you the general trend for all ques-
tions (including non-security-related) on StackOverflow. The total
number of questions was peaking in the year 2016 and went down
to around the level from year 2012. Figure 18 reveals the relative dis-
tribution of questions getting an accepted answer was decreasing
over the year. Table 5 highlights our previous finding that the prob-
ability of a question getting answered within 1 month is falling over
10 years. However, this downward trend was stronger especially
for security-related questions, as can be seen in figure 19.

Figure 20 reveals that starting from the year 2014 the view
count/question for security-related topics are on average higher
than all topics on StackOverflow. Furthermore, since 2014 more
security-related questions are bookmarked as favorite than all top-
ics, while the average score for security questions has since been
higher. (Refer to Figure 21) Score indicates the number of upvotes
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Figure 18: Duration Distribution for All StackOverflow Ques-
tions (including non security-related topics).

Figure 19: Probability of Getting Accepted Answer Within a
Month: Security-Related vs. All StackOverflow Questions.

Figure 20: AverageViewCount: Security-Related vs. All Stack-
Overflow Questions.

minus downvotes. In other words, the interest in security-related
topic is higher than average for all topics.

The average comment number which can be seen in figure 22
supports this finding, as the average comment for security-related
topics is higher than for all topics.

The average answer number for security-related topics is lower
than for all topics. It could indicate that even with higher interest
(i.e. view and comment count) for security-related topics, fewer

Figure 21: Average Favorite Count and Score: Security-
Related vs. All StackOverflow Questions.

Figure 22: Average View and Comment Count: Security-
Related vs. All StackOverflow Questions.

developers can deliver answers. Therefore, a smaller portion of
security-related questions was getting accepted answers which can
be seen in figure 19.

Based on these findings, we conclude that the interest in security-
related topics is higher than average for other topics on StackOver-
flow. But it seems to be under-researched, as fewer developers can
deliver accepted questions or even a question.

5.4 Analysis
Based on our previous findings (RQ1, RQ2 and RQ3), we have
concluded the following:

• There are indications that the questions were getting more
difficult. Therefore, it took longer to get an accepted answer
even though the user engagement (average total comment)
was increasing over time.

• Java programming language, Spring framework (built on
Java) and its extension Spring Security are very popular, while
the popularity of Spring Boot is growing at a very fast pace.

• The popularity of .NET and its extension ASP.NET sank
steadily, while ASP.NET Model View Controller fell rapidly
over the time. It doesn’t have to mean that they fell out of
favour. It could indicate that they became mature and had
therefore fewer vulnerability.

9
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6 DISCUSSION
In this section, we presented some factors which could impact the
validity of this paper.

6.1 Threats to Validity
We identified some threats that could impair the validity of our
analysis. First, we could not analyze 841 out of 264.148 questions
which are around 0.3% of all the data. This is due to some word
combinations in the questions being unable to be processed during
the step Data Transformation. (The process overview can be seen in
figure 3.) Therefore we excluded these from our analysis. Second,
in order to get security-related data, we applied keyword filtering,
as described in section 4.1. One of the used keywords is secur. We
found a question example, where the word secur appears but not
in the context of software security. For a preview of that question,
refer to figure 23. The word secur appears as a dataset about food
security being used.

Figure 23: Question Containing Word secur Not In Context
Of software security.

Third, it could be that our findings based on data from Stack-
Overflow don’t reflect the general trend for security-related topics.
To overcome this, data from other community Q&A forums (such
as Quora, Reddit, CodeProject, etc.) should also be included, to get
a better picture of the overall security trend. Fourth, we set the
limit for our paper to only analyze data from the last available 10
years (2012-2021). Hence, our findings might not reflect the trend
for earlier years.

7 RELATEDWORK
While reviewing for relevant literature, we found some studies an-
alyzing security related questions on StackOverflow. None of the
previous studies examined the general security-related trends and
recurrent topics in context of configurable software. Lopez and Tun
analyzed the security-related conversations between question asker
and commenter. They found indications that StackOverflow inter-
actions are shaping perceptions about security for non-specialist
developers [13]. Another study from Yang and Lo performed a topic
discovery algorithm using LDA on 30.054 StackOverflow posts (89%
less than our study). However, the focus of the study is not on
configurable software but rather general security topics [20]. Croft
et al.’s study about security challenge of different programming
language examined developers’ discussions from Stack Overflow
and GitHub. They found that the security-related discussion trend
on StackOverflow and GitHub are different than each other. E.g.

Web development security and authentication challenges are more
popular on GitHub [9].

8 CONCLUSSION
In this paper, we presented our findings about recurring security-
related topics in context of configurable software and their general
trend. We did that by collecting security-related questions from
StackOverflow and performing an unsupervised topic discovery al-
gorithm, i.e. Latent Dirichlet Allocation. We found that the interest
in topicsAndroid & Java Development andCloud Access Management
are increasing during our analytic time frame (2012-2021). Further-
more, the interest or user engagement for security-related topics
are higher than for general software development topic. However,
on average security-related questions get fewer answers, which
could indicate that this topic is in general under-researched.
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